Machine Learning and Data Engineering

team.jpg

MLDE Group (2024)

The Machine Learning and Data Engineering (MLDE) group focuses on developing efficient and scalable implementations of modern machine learning methods. Our research addresses key challenges such as reducing the computational resources required for the inference phase of large-scale deep learning models or accelerating training through distributed computing. Beyond advancing algorithms, we place a strong emphasis on bridging the gap between theory and practice by designing solutions that can be deployed in real-world, resource-constrained environments. This often involves close collaboration with experts from other domains, including large-scale satellite data analysis or modern energy systems. The group is part of the Department of Information Systems of the University of Münster and is led by Fabian Gieseke.

Selected Publications

  1. I. Fayad, M. Zimmer, M. Schwartz, P. Ciais, F. Gieseke, G. Belouze, S. Brood, A. De Truchis, and A. d’Aspremont
    ICML25 42nd International Conference on Machine Learning (ICML) 2025
  2. J. Pauls, M. Zimmer, B. Turan, S. Saatchi, P. Ciais, S. Pokutta, and F. Gieseke
    ICML25 42nd International Conference on Machine Learning (ICML) 2025
  3. P. N. Bernardino, W. D. Keersmaecker, S. Horion, R. V. D. Kerchove, S. Lhermitte, R. Fensholt, S. Oehmcke, F. Gieseke, K. V. Meerbeek, C. Abel, J. Verbesselt, and B. Somers
    JOURNALNature Climate Change 2025
  4. J. Pauls, M. Zimmer, U. M. Kelly, M. Schwartz, S. Saatchi, P. Ciais, S. Pokutta, M. Brandt, and F. Gieseke
    ICML24 41st International Conference on Machine Learning (ICML) 2024
  5. C. Lülf, D. M. Lima Martins, S. M. A. Vaz, Y. Zhou, and F. Gieseke
    SIGIR24 Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (Demo Track) 2024
  6. C. Lülf, D. M. Lima Martins, S. M. A. Vaz, Y. Zhou, and F. Gieseke
    VLDB23 Proceedings of the VLDB Endowment 2023
  7. C. Lülf, D. M. Lima Martins, S. M. A. Vaz, Y. Zhou, and F. Gieseke
    SIGSPATIAL23 Proceedings of the 31st International Conference on Advances in Geographic Information Systems, SIGSPATIAL, Demo Paper, 2023 (Best Demo Award) 2023
  8. S. Oehmcke, and F. Gieseke
    SDM22 Proceedings of the 2022 SIAM International Conference on Data Mining (SDM) 2022
  9. M. Mugabowindekwe, M. Brandt, J. Chave, F. Reiner, D. Skole, A. Kariryaa, C. Igel, P. Hiernaux, P. Ciais, O. Mertz, X. Tong, S. Li, G. Rwanyiziri, T. Dushimiyimana, A. Ndoli, U. Valens, J. Lillesø, F. Gieseke, C. Tucker, S. S. Saatchi, and R. Fensholt
    JOURNALNature Climate Change 2022
  10. F. Gieseke, S. Rosca, T. Henriksen, J. Verbesselt, and C. E. Oancea
    ICDE20 Proceedings of the 36th IEEE International Conference on Data Engineering (ICDE) 2020
  11. M. Brandt, C. Tucker, A. Kariryaa, K. Rasmussen, C. Abel, J. Small, J. Chave, L. Rasmussen, P. Hiernaux, A. Diouf, L. Kergoat, O. Mertz, C. Igel, F. Gieseke, J. Schöning, S. Li, K. Melocik, J. Meyer, SinnoS, E. Romero, E. Glennie, A. Montagu, M. Dendoncker, and R. Fensholt
    JOURNALNature 2020
  12. F. Gieseke, and C. Igel
    KDD18 Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018 2018